

Mark Scheme (Results)

January 2021

Pearson Edexcel International Advanced Level In Chemistry (WCH15) Paper 1:Transition Metals and Organic Nitrogen Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021 Publications Code WCH15_01_2101_MS All the material in this publication is copyright © Pearson Education Ltd 2021

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Section A (Multiple Choice)

Question number	Answer	Mark
1	The only correct answer is B (gains electrons, decreases)	(1)
	A is incorrect because the oxidation number of manganese decreases	
	<i>c</i> is incorrect because manganese gains electrons and its oxidation number decreases	
	D is incorrect because manganese gains electrons	

Question number	Answer	Mark
2	The only correct answer is A (To increase the rate of the equilibrium between the hydrogen gas and the hydrogen ions)	(1)
	<i>B</i> is incorrect because platinum black is chemically identical to shiny platinum	
	<i>c</i> is incorrect because platinum black has the same electrical conductivity as shiny platinum	
	<i>D</i> is incorrect because platinum black does not affect the conditions of the system	

Question number	Answer	Mark
3(a)	The only correct answer is C (Fe(s) Fe ²⁺ (aq) Sn ²⁺ (aq) Sn(s))	(1)
	A is incorrect because the oxidised part of $Sn(s) Sn^{2+}(aq)$ should be next to the cell junction	
	B is incorrect because the oxidised part of Fe(s) $ $ Fe ²⁺ (aq) should be next to the cell junction	
	<i>D</i> is incorrect because the oxidised part of both half-cells should be next to the cell junction	

Question number	An	swer	Mark
3(b)	The	e only correct answer is B (–0.14 V)	(1)
	A	is incorrect because the E ^e _{cell} value has been subtracted from the electrode potential of the Fe/Fe ²⁺ electrode system rather than added.	
	С	is incorrect because the sign has been reversed.	
	D	is incorrect because the E ^e _{cell} value has been subtracted from the electrode potential of the Fe/Fe ²⁺ electrode system rather than added and the sign has been reversed.	

Question number	Answer	Mark
4	The only correct answer is D (H ₂ (g) + $2OH^- \rightarrow 2H_2O(I) + 2e^-$)	(1)
	<i>A</i> is incorrect because this is the cathode reaction	
	B is incorrect because this is the reverse of the cathode reaction	
	<i>c</i> is incorrect because hydrogen is the fuel and must be oxidised	

Question	Answer	Mark
number		
5	The only correct answer is A (chromium)	(1)
	B is incorrect because an atom of iron has four unpaired electrons	
	<i>c</i> is incorrect because an atom of manganese has five unpaired electrons	
	D is incorrect because an atom of vanadium has three unpaired electrons	

Question number	Answer	Mark
6	The only correct answer is C ((nickel) forms stable ions with partially filled d orbitals)	(1)
	<i>A</i> is incorrect because elements can be in the d block but not be transition metals	
	<i>B</i> is incorrect because elements can have partially filled d orbitals but not be transition metals	
	D is incorrect because elements can form stable compounds with different oxidation states but not be transition metals	

Question number	Answer	Mark
7(a)	The only correct answer is D (Pt(NH ₃) ₂ Cl ₂ is square planar and CrCl ₄ ⁻ is tetrahedral)	(1)
	A is incorrect because $CrCl_4^-$ is tetrahedral	
	B is incorrect because Pt(NH ₃) ₂ Cl ₂ is square planar	
	D is incorrect because $Pt(NH_3)_2Cl_2$ is square planar and $CrCl_4^-$ is tetrahedral	

Question	Answer	Mark
number 7(b)	The only correct answer is B (the bonding in both complexes is dative covalent)	(1)
	A is incorrect because the bonding is ionic in neither complex	
	C is incorrect because the bonding in $CrCl_4^-$ is dative covalent	
	D is incorrect because the bonding in $Pt(NH_3)_2Cl_2$ is dative covalent	

Question number	Answer	Mark
8	The only correct answer is A (anhydrous cobalt(II) chloride is blue and hydrated cobalt(II) chloride is pink)	(1)
	<i>B</i> is incorrect because the colours are the wrong way round	
	<i>c</i> is incorrect because the test does not involve a change of oxidation state	
	<i>D</i> is incorrect because the test does not involve a change of oxidation state	

Question number	Answer	Mark
9	The only correct answer is D (Fe ²⁺ is readily oxidised to Fe ³⁺ which is then reduced to Fe ²⁺)	(1)
	A is incorrect because Fe^{2+} does not react with iodide ions	
	B is incorrect because the number of outer electrons is not a factor in homogeneous catalysis	
	<i>c</i> is incorrect because the number of active sites is a factor in heterogeneous catalysis not in homogeneous catalysis	

Question number	Answer	Mark
10	The only correct answer is D ((the overlap of) p orbitals to form π bonds)	(1)
	A is incorrect because the σ bonds are not delocalised	
	B is incorrect because s orbitals do not form π bonds	
	\boldsymbol{c} is incorrect because the σ bonds are not delocalised	

Question number	Answer	Mark
11	The only correct answer is B (result in a kinetic barrier to intermediate formation)	(1)
	<i>A</i> is incorrect because the delocalised electrons attract electrophiles	
	C is incorrect because both ethene and benzene have endothermic enthalpies of formation and this is not a factor in their reactivity	
	D is incorrect because catalysts have no effect on the thermodynamics of a reaction	

Question number	Answer	Mark
12	The only correct answer is C (2-methylbutanamide)	
	<i>A</i> is incorrect because the amide carbon is part of the main carbon chain	
	<i>B</i> is incorrect because the amide carbon is part of the main carbon chain	
	<i>D</i> is incorrect because the carbon chain is numbered from the amide end	

Question number	Answer	Mark
13	The only correct answer is C (phenylamine, ammonia, butylamine)	
	<i>A</i> is incorrect because butylamine has the highest pH and phenylamine the lowest	
	<i>B</i> is incorrect because phenylamine has the lowest pH	
	D is incorrect because phenylamine has a lower pH than ammonia	

Question number	Answer	Mark
14	The only correct answer is A $\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	(1)
	B is incorrect because this monomer has four carbon atoms not three and would give a polymer with a methyl group on a different carbon to the amide group	
	<i>c</i> is incorrect because this monomer has four carbon atoms not three and would give a polymer with a methyl group branched chain	
	D is incorrect because this monomer has five carbon atoms not three and would give a polymer with two methyl group branched chains	

Question	Answer	Mark
number		
15	The only correct answer is D (a polyamide but not a polypeptide)	(1)
	<i>A</i> is incorrect because polypeptides are formed from amino acids	
	B is incorrect because it is a polyamide	
	<i>C</i> is incorrect because it cannot be a polypeptide	

Question number	Answer	Mark
16	The only correct answer is B (five)	
	<i>A</i> is incorrect because the carbon with the two methyl groups attached has been omitted	
	<i>C</i> is incorrect because the carbon with the two methyl groups attached has been omitted and the symmetry of the structure has been ignored	
	D is incorrect because the symmetry of the structure has been ignored	

Question	Answer	Mark
number		
17	The only correct answer is C (C ₄ H ₆)	
	A is incorrect because C_2H_3 cannot be a molecular formula	
	B is incorrect because this formula is obtained without doubling the moles of water to give the moles of hydrogen	
	D is incorrect because the moles of water has been halved instead of doubled	

Question number	Answer	Mark
18	The only correct answer is C (19.51 g)	(1)
	<i>A</i> is incorrect because this is the mass of benzenecarboxylic acid that would be formed from 8.24 g of benzene in this sequence	
	<i>B</i> is incorrect because this is the mass of benzene if both reactions have 100% yield	
	D is incorrect because this value is calculated without using the M _r values	

TOTAL FOR SECTION A = 20 MARKS

Section **B**

Question number	Answer	Additional guidance	Mark
19(a)	• P = copper / Cu (1)	Ignore omission of brackets in complexes If name and formula are given, both must be correct Penalise omission of oxidation states twice Ignore state symbols even if incorrect Ignore charge vertically above the Cu	(7)
	 Q = hexaaquacopper(II) / [Cu(H₂O)₆]²⁺ (1) R = copper(II) hydroxide / Cu(OH)₂ / Cu(OH)₂(H₂O)₄ (1) 	Allow Cu ²⁺ (aq) / Cu ²⁺ / copper(II) sulfate / CuSO ₄	
	• S = copper(II) oxide / CuO (1)	Ignore copper oxide	
	• T = tetraamminecopper(II) / $[Cu(NH_3)_4]^{2+}$ / $[Cu(NH_3)_4(H_2O)_2]^{2+}$ (1)	Do not award [Cu(NH ₃) ₆] ²⁺	
	• $\mathbf{V} = \text{diamminecopper(I) / [Cu(NH_3)_2]}^+(1)$	Allow 3 or 4 ammonia ligands Ignore water ligands	
	• \mathbf{W} = hexaaquacopper(II) / [Cu(H ₂ O) ₆] ²⁺ (1)	Allow Cu ²⁺ (aq) / Cu ²⁺ / copper(II) nitrate / Cu(NO ₃) ₂	

Question	Answer	Additional guidance	Mark
number			
19(b)(i)			(1)
	• complex(es)	Allow complex ions	
		Allow ammine complexes	
		Allow transition metal complexes	
		Allow ligand complexes	

Question number	Answer	Additional guidance	Mark
19(b)(ii)	An explanation that makes reference to the following	Allow use of T and V d (subshell /orbitals) must be mentioned at least once penalise use of 'orbital' /shell rather than orbitals/ subshell once only Ignore detailed explanations of colour in transition metal compounds even if incorrect	(3)
	 (the colour is due to) transition /promotion of electrons between (split) (3)d subshell / orbitals (1) 	Allow d-d electron transitions Ignore just 'from lower to higher energy level'	
	• in Cu(II) the d orbitals are partially filled (so electron transitions are possible) (1)	If M2 and M3 not scored, correct d subshell electronic configurations of Cu(I) and Cu(II) without explanation score (1)	
	 in Cu(I) the d orbitals are full and so no (electron) transitions are possible (1) 	Allow no incompletely filled (3)d subshell / orbitals Do not award subshell not split light frequency outside visible region no electrons in d orbitals	

Question	Answer		Additional guidance	Mark
number				
19(b)(iii)	An explanation that makes reference to the following			(2)
	• Cu(l) is oxidised to Cu(ll)	(1)	Allow Cu(I) is oxidised Allow Cu(I) forms Cu(II) Allow V is oxidised to T	
	• by oxygen in the air	(1)	Allow just 'by oxygen' or 'by air'	

Question number	Answer	Additional guidance	Mark
19(c)(i)	• a balanced ionic equation	Example of equation $2Cul \rightarrow Cu + Cu^{2+} + 2l^{-}$ Allow $2Cu^{+}\rightarrow Cu + Cu^{2+}$	(1)
		Do not award additional / spectator ions Ignore state symbols even if incorrect.	

Question	Answer		Additional guidance	Mark
number				
19(c)(ii)	An answer that makes reference to the following points			(2)
	• identification of the appropriate half-equations and E^{e} values	(1)	$Cu^{2+} + e^{-} \rightleftharpoons Cu^{+} E^{e} = +0.15 V$ and $Cu^{+} + e^{-} \rightleftharpoons Cu E^{e} = +0.52 V$	
			Allow just $E^{\Theta}_{cell} = 0.52 - 0.15$	
			M2 dependent on M1	
	 calculation of E^o cell for the reaction and states (positive) so is feasible (1) 		E^{Θ}_{cell} (= 0.52 – 0.15) = (+)0.37 (V) and therefore reaction is (thermodynamically) feasible	
			No TE on incorrect half-equations / <i>E</i> ^e _{cell} values	

Question number	Answer	Additional guidance	Mark
19(d)		example of calculation	(6)
	 calculation of moles of thiosulfate in mean titre (1) 	mol S ₂ O ₃ ²⁻ = $\frac{26.65 \times 0.0500}{1000}$ = 1.3325 x 10 ⁻³ / 0.0013325	
	 determines ratio of Cu²⁺ to S₂O₃²⁻ and 	Cu ²⁺ in 25 cm ³ = S ₂ O ₃ ²⁻ = 1.3325 x 10 ⁻³	
	gives moles of Cu^{2+} in 25 cm ³ (1)		
	• calculation of moles of Cu ²⁺ in 250 cm ³	= 10 x 1.3325 x 10 ⁻³ = 1.3325 x 10 ⁻²	
	(1)	= 4.26 / 1.3325 x 10 ⁻² = 319.70	
	• calculation of M_r of mitscherlichite (1)	= 2 x 39.1 + 63.5 + 4 x 35.5 = 283.7	
	• calculation of M_r of K ₂ CuCl ₄ (1)	mass of water = 319.7 – 283.7 = 36 moles of water = 36 / 18 = 2 (= n)	
	• calculation of moles of water (1)	correct answer with some working scores (6) TE at each stage but	
	Alternative M4 and M6 mass of K ₂ CuCl ₄ in sample = $1.3325 \times 10^{-2} \times 283.7 = 3.7803$ g mass of water in sample = $4.26 - 3.7803 = 0.47970$ (1)	Do not award M4 or M6 if calculated value for M_r of (mitscherlichite) $< M_r$ (K ₂ CuCl ₄)	
		Factor of 10 may be used at any point M1 to M3	
	mol water in sample = $0.47970 \div 18 = 0.026650$ and ratio H ₂ O : K ₂ CuCl ₄ = $0.026650 \div 0.013325 = 1:2$ (1)	Ignore SF in final answer	

(Total for Question 19 = 22 marks)

Question number	Answer	Additional guidance	Mark
20(a)(i)		Penalise omission of the positive charge or use of negative charges once only in 20(a)(i) and (ii) Penalise use of just molecular formulae once only in 20(a)(i) and (ii)	(2)
		Allow the positive charge anywhere on a structure or outside brackets covering a structure	
	H O HC+ (1) H	Allow structural formulae e.g. CH₃CO⁺	
	• H H O • HCC+ (1) H H	Allow $C_2H_5CO^+$ Allow $CH_3COCH_2^+$ Ignore <i>m/z</i> values even if incorrect	

Question	Answer	Additional guidance	Mark
number			
20(a)(ii)		Allow only CH_3^+ , $CH_3CH_2^+$, $C_2H_5^+$, $CH_3COCH_2CH_3^+$	(1)
	reasonable species	Ignore <i>m/z</i> values even if incorrect	
		Do not award species with $m/z = 43$ or 57	

Question	Answer		Additional guidance	Mark
number				
20(b)	An answer that makes reference to the following points:		Score correct compounds / reagents even if preceding chemistry is incorrect) Allow unbalanced equations and reaction schemes	(4)
	• reaction of butanone with iodine in sodium hydroxid	5		
	/ NaOH	(1)	Accept potassium hydroxide Allow alkali / alkaline / OH⁻	
	• to form sodium propanoate	(1)		
			Accept CH₃CH₂COO⁻Na⁺ / CH₃CH₂COONa Allow propanoate (ion)	
	 add dilute sulfuric acid / H₂SO₄ and to form propanoic acid / CH₃CH₂COOH (and distil off) (1) 		Accept any identified strong acid. Ignore H ⁺	
			Allow 'lithal'	
	(reflux propanoic acid with)			
	lithium_tetrahydridoaluminate(III) / LiAlH₄/		Allow the use of LiAlH₄ in dry ether	
	lithium aluminium hydride in dry ether		on propanoic acid or propanal	
	(to give propan-1-ol)	(1)	(however these are obtained)	
			to give propan-1-ol	

Question number	Answer	Additional guidance	Mark
20(c)	An answer that makes reference to the following points:	Allow names or formulae for reagents and intermediates. Score correct compounds and reagents even if preceding chemistry is incorrect) Equations need not balance	(5)
	• identification of a suitable halogenoalkane (1)	CH₃Br Allow Cl or I, Ignore X for halogen	
	• reaction with magnesium (powder) in dry ether (1)	Allow the use of dry ether with or without Mg in this reaction	
	 to form the Grignard reagent CH₃MgBr / methyl magnesium bromide (1) 	or halogen given for M1	
	• formation of 2-methylbutan-2-ol by reacting the Grignard reagent with butanone (1) $H_{3}C - C - N - C - H_{0}C - C - C - H_{3}$	Ignore just 2-methylbutan-2-ol If Grignard reagent not used (i.e. M1, M2, M3 & M4 not scored, reaction of butanone with HCN / KCN / CN- to form 2-hydroxy-2- methylbutanenitrile scores (1) [ignore reaction conditions]	
	 reaction with concentrated phosphoric acid or concentrated sulfuric acid (to give 2-methylbut-2-ene (and some 2-methylbut-1-ene)) (1) 	Allow pass alcohol (vapour) over heated alumina / Al_2O_3 Allow correct reaction to form halogenoalkane and dehydrohalogenation with OH^- in ethanol Allow 1 mark for the dehydration of any alcohol by any of these reactions	

(Total for Question 20 = 12 marks)

Question	Answer	Additional guidance	Mark
number			
21(a)	An answer that makes reference to the following points:	These are standalone marks	(2)
	 equation relating E^o_{cell} to half-cell values and 	$E^{\rm o}_{\rm cell} = E^{\rm o}_{\rm R} - E^{\rm o}_{\rm L}$	
	determination of E° for the right-hand electrode (1)	$1.94 = E^{o}_{R} - (-0.61)$	
		<i>E</i> ^o _R = 1.94 – 0.61= (+)1.33 (V)	
		Allow (+)1.33 (V) with some working which relates 1.33 to 1.94 and –0.61	
		Allow (+)1.33 (V) with the Cr ₂ O ₇ ^{2–} / Cr ³⁺ half- equation	
	• identification of F and G (1)	F = Cr ₂ O ₇ ^{2–} and G = Cr ³⁺ Species must be clearly identified	

Question number	Answer		Additional guidance	Mark
21(b)			Example of equation	(2)
	 correct species on both sides of the equation and no electrons) (1)	$3C_2H_5OH + Cr_2O_7^{2^-} + 8H^+$ $2Cr^{3^+} + 3CH_3CHO + 7H_2O$ Allow	
	equation balanced	(1)	multiples uncancelled H ⁺ ions → or ≓	
			Ignore state symbols even if incorrect Correct balanced equation with uncancelled electrons scores (1)	

Question number	Answer	Additional guidance	Mark
21(c)	correct equation	Example of equation $2CrO_4^{2^-} + 2H^+ \rightleftharpoons Cr_2O_7^{2^-} + H_2O$	(1)
		Allow multiples \rightarrow or \rightleftharpoons	
		Ignore state symbols even if incorrect Do not award uncancelled electrons	

(Total for Question 21 = 5 marks)

Question	Answer		Additional guidance	Mark
number 22(a)	 identification of correct algebraic equation for x and solves equation to obtain x identification of correct algebraic equation for x and y (1) solves equation to obtain y and gives formula of the hydrocarbon 	(1)	Example of calculation {from the equation 1 mol of C_xH_y gives x mol of CO_2 so 25 mol will give 25x mol CO_2 and 25 cm ³ will give 	(3)
			correct formula with no working scores (1)	

Question number	Answer	Additional guidance		
22(b)		Examples of structures	(2)	
	• structure of cyclobutane (1)			
	• structure of methylcyclopropane(1)			
		or displayed / semi-displayed structures		
		Ignore names even if incorrect		
		TE on 22(a) for cycloalkanes only		
		If (a) is an alkane with C>3 2 correct isomers scores 1 mark		

(Total for Question 22 = 5 marks)

Question	Answer		Additional guidance	Mark
number				
*23	This question assesses the student's at logically structured answer with linkage		Guidance on how the mark scheme should be applied.	
	Marks are awarded for indicative cont structured and shows lines of reasonin		The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	
	The following table shows how the maindicative content.	arks should be awarded for		
	8	Number of marks awarded for ndicative marking points	reasoning).	
	<u>6</u> <u>5-4</u>	4 3	same indicative marking points would yield an overall	
	3-2	2 1		
	0	0	In general it would be expected that	
	The following table shows how the mastructure and lines of reasoning	arks should be awarded for	structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning).If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no	
		Number of marks awarded for structure of answer and sustained lines of reasoning	the reasoning. If no reasoning mark(s) awarded do not	
	Answer shows a coherent logical structure with linkages and fully sustained lines of reasoning demonstrated throughout	2	Comment : Look for the indicative marking points first,	
	Answer is partially structured with some linkages and lines of reasoning	1	and sustained line of reasoning	
	Answer has no linkages between points and is unstructured	0		

Question number	Answer	Additional guidance	Mark
*23	Indicative content		(6)
(cont)	IP1 both platinum and V_2O_5 are heterogeneous catalysts	Allow (for IP1) both catalysts (provide an alternative path with) lower activation energy Do not award IP1 if V ₂ O ₅ is homogeneous	(0)
	IP2 there is adsorption of reactants on the (catalyst) surface (this applies to both reactions)	or chemisorption / bond strongly Allow IP2 , IP3 and IP4 for general description of heterogeneous catalysis	
	 IP3 (in the catalytic converter) adsorbed reactant bonds are weakened / broken allowing reaction to occur more easily. (this applies only to the catalytic converter) 	penalise ab sorption once only Ignore IP3 for the Contact Process Allow any indication of the products leaving the	
	 IP4 (in the catalytic converter there is) desorption of products from the surface (this applies to both reactions) IP5 (in the Contact Process the) V₂O₅ is reduced 	surface of the catalyst Equations showing reduction of V_2O_5 by SO_2 and the subsequent oxidation do not need to balance	
	(to V(III) / V(IV)) and by sulfur dioxide / SO ₂	If neither IP5 nor IP6 scored Allow IP6 for Either	
	IP6 Vanadium species /V(III) / V(IV) is oxidised to V(V) and by oxygen	V_2O_5 first reduced then (V compound) oxidised or 2SO ₂ + O ₂ ⇒ 2SO ₃ and2CO + 2NO → 2CO ₂ + N ₂	

Section C			
Question	Answer	Additional guidance	Mark
number			
24(a)(i)	An explanation that makes reference to the following points		(3)
	• (π) electron system (in the right-hand ring) is delocalised (1)	Allow aromatic ring Ignore just 'form aπ bond' Do not award just it is a benzene ring	
	M2 and M3 scored from any two of		
	• the delocalisation involves the lone-pair(s) in the nitrogen (atom(s)) and the π electrons of the double bonds (1)	Allow just 'the delocalisation involves the lone- pair(s) in the nitrogen (atom(s))	
	• (the right-hand ring) will undergo substitution reactions rather than addition reactions (1)	Allow electrophilic substitution (rather than addition)	
	• caffeine has stabilisation / delocalisation energy(1)	Ignore electrophilic reaction	
	 all the C—N bonds (in the 5-membered ring) will be the same (length)(1) 	Allow caffeine / (delocalised) ring is more stable	
		Allow all the bonds will be the same length Ignore C=C bonds will be the same length	

Question number	Answer	Additional guidance	Mark
24(a)(ii)	An explanation that makes reference to the following points		(2)
	• Description of basicity (1)	Either lone pair donation Or proton acceptor	
	• Effect of delocalisation(1)	Nitrogen lone pair incorporated in delocalised system / overlaps with the π (electron) ring and reduces electron density / lone pair availability	
		Do not award overlap with the benzene ring	
		Ignore references to the amide even if incorrect.	
		If no other mark is scored the positive inductive effect of alkyl groups increases availability of the lone pair in a primary amine scores (1)	

Question	Answer	Additional guidance	Mark
number			
24(b)(i)		Example of calculation	(4)
	• determination of M_r (from molecular formula)(1)	$(C_8H_{10}N_4O_2) M_r = 194$	
	• calculation of amount of caffeine(1)	$\frac{85}{1000 \text{ x } 194} (= 4.3814 \text{ x } 10^{-4} / 0.00043814) \text{ (mol)}$	
	• calculation of concentration of caffeine (1)	$= \frac{1000 \times 85}{200 \times 1000 \times 194} / \frac{1000 \times 0.00043814}{200}$	
		= 2.1907 x 10 ⁻³ / 0.0021907 (mol dm ⁻³)	
	• final answer to 1 or 2 SF (1)	= 2 x 10 ⁻³ /2.2 x 10 ⁻³ / 0.002 /0.0022(mol dm ⁻³)	
		Do not award > 2 SF	
		TE at each stage correct answer with no working scores (1)	

Question number	Answer	Additional guidance	Mark
24(b)(ii)		Example of calculation	(2)
	• calculation of number of half-lives (1)	$\frac{20}{160} = \frac{1}{8} = \left(\frac{1}{2}\right)^n n = 3$	
		or $160 \rightarrow 80 \rightarrow 40 \rightarrow 20$ (3 half lives)	
	• applies half-lives to three hours (1)	time = 3 x 3 = 9 hours	
		TE on number of half lives calculated	
		correct answer with some working scores (2)	

Question number	Answer	Additional guidance	Mark
24(c)(i)	 A mechanism showing the following structure of 3-chloropropenoic acid (1) 	M1 and M2 are for the electrophile formation M3, M4 and M5 are for the electrophilic substitution Example of mechanism	(5)
		Allow Br or I for Cl and Fe for Al Penalise errors in structure of 3-chloropropenoic acid / electrophile in M1 or M2 only	
	 structure of the electrophile and balanced equation involving AlCl₃and AlCl₄[−] (1) 	$ \rightarrow HO + CI - AI - CI - CI$	
	 curly arrow from on or within the circle to the positively charged carbon (1) Allow any electrophile for M3, M4 and M5 	но + ОН	
		Allow curly arrow from anywhere in the hexagon Allow dotted horseshoe	

Question number	Answer	Additional guidance	Mark
24(c)(i) cont	 intermediate structure including charge with horseshoe covering at least 3 carbon atoms and facing the tetrahedral carbon and with some part of the positive charge within the horseshoe (1) 		
	 curly arrow from C—H bond to anywhere in the benzene ring reforming delocalised structure with phenol groups in the 3 and 4 positions(1) 	$HO + H^{+}$	
		penalise incorrect position / omission of the phenol groups at final marking point. Ignore omission of H ⁺ in final step	
		correct Kekulé structures score full marks	
		Ignore structure of substituents apart from the position of the OH groups in final structure	

Question	Answer	Additional guidance	Mark	
number				
24(c)(ii)	24(c)(ii)	ŎН	or displayed structure	(1)
		Allow		
	но	COOH and CO ₂ H		
		Ignore all connectivity errors to 'OH' Only penalise O–H–C		
	но он			

Question number	Answer	Additional guidance	Mark
24(d)(i)		Allow any labelling sequence Do not award any other labelling	(1)

Question number	Answer		Additional guidance	Mark
-	Proton environment (labelled as in (i)) A B	Splitting pattern singlet quartet	all four correct (2) three correct (1) Allow non-standard terms such as 'two splits' or just '2' for doublet	(2)
	C D OR A A Singlet	et (quintet if OH a double	If D (OH proton) is given as a doublet, allow B as a quartet or as a quintet Ignore carbonyl carbon labelled as a proton environment	

(Total for Question 24 = 20 marks) TOTAL FOR SECTION C = 20 MARKS

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom