

Mark Scheme (Results)

October 2023

Pearson Edexcel International Advanced Level In Physics (WPH16) Paper 01 Unit 6: Practical Skills in Physics II

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2023 Question Paper Log Number: P75626A Publications Code: WPH16_01_MS_2310 All the material in this publication is copyright © Pearson Education Ltd 2023

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Answer		Mark
1(a)	EITHER		
	The wire will get hot	(1)	
	Turn off the power supply between readings		
	Add a resistor to the circuit	(1)	
	OR		
	There may be a short circuit	(1)	
	Add a resistor to the circuit	(1)	
	OR		
	There is a risk of electric shock (from the copper wire)	(1)	•
	Use insulated wire	(1)	2
1(b)	Circuit including d.c. power supply and ammeter in series with copper wire	(1)	
	Circuit includes means of varying current, e.g. variable resistor	(1)	2
	[Ignore additional components that do not prevent circuit working as expected]		
	copper wire		
1(c)	There are not enough readings	(1)	
	The range of readings is too small	(1)	
	The (relationship predicts that the graph should be a straight line through the origin		
	Or The relationship is in the form $y = mx$	(1)	
	An accurate best fit line can't be drawn		
	A straight line graph can't be confirmed Or		
	A <i>y</i> -intercept of zero can't be confirmed		
	Direct proportionality can't be confirmed	(1)	4
	Total for question 1		8

Question Number	Answer		Mark
2(a)	Uses $T = 2\pi \sqrt{\frac{l}{g}}$ with $l = H - h$	(1)	
	Clear algebra leading to formula	(1)	2
	Example of derivation		
	$T = 2\pi \sqrt{\frac{l}{g}}$ where $l = H - h$		
	So $T = 2\pi \sqrt{\frac{H-h}{g}}$		
	$\therefore T^{2} = 4\pi^{2} \left(\frac{H-h}{a}\right) = \frac{4\pi^{2}H - 4\pi^{2}h}{a} = \frac{4\pi^{2}H}{a} - \frac{4\pi^{2}h}{a}$		
2(b)	1 Use a metre rule to measure <i>h</i>	(1)	
2(0)		(1)	
	 Ensure metre rule is vertical using a set square Or Use a set square to read off the scale Or Measure to the better of the better o	(1)	
	Or Measure to the bottom of the bob and add the radius of the bob	(1)	
	3. Use a (timing) marker (at the centre of the oscillation)	(1)	
	4. Measure (time for) multiple oscillations and divide by the number of oscillations		
	Or Repeat the measurement of <i>T</i> and calculate the mean Or Start timing the oscillations once the oscillations have settled	(1)	
	5. Determine <i>T</i> for (at least) 5 different values of <i>h</i>	(1)	
		(1)	6
	6. Plot a graph of T^2 against <i>h</i> and determine the intercept (to calculate <i>H</i>)		
	[ANNOTATE WITH MPs AWARDED]		
2(a)	The recording can be viewed in alow resting	(1)	
2(0)	Judging when an oscillation is complete will be more accurate	(1) (1)	2
	Total for question 2		10
			10

Question Number			Answei	•			Mark
3(a)	EITHER ln $P = \ln P_0 - Compares to y constant)$	bh y = c + mx whe	re the gradient i	s $-b$ is the gradien	nt (which is	(1) (1)	
	MP2 depende	nt on MP1					
	OR $\ln P = -bh + Compares to y constant)$ MP2 dependent	$\ln P_0$ y = mx + c when the matrix on MP1	re the gradient i	s $-b$ is the gradien	nt (which is	(1) (1)	2
3(b)(i)	Values of ln P correct and consistent to 3 d.p. Accept consistent to 2 d.p. Axes labelled: y as ln (P / kPa) and x as h / m Appropriate scales chosen Processed data plotted accurately Best fit line drawn [Accept graph with values of ln P in Pa, log values only credit MP3,4,5] [ANNOTATE WITH MPs AWARDED, TICK CHECKED PLOTS]				(1) (1) (1) (1) (1)	5	
		<i>h</i> / m	<i>P</i> / kPa	ln (P/kPa)			
		305	97.7	4.582			
		762	92.5	4.527			
		1372	85.9	4.453			
		1829	81.2	4.397			
		2438	75.3	4.321			
		3048	69.7	4.244			

3(b)(iii)	Uses gradient = $(-)\frac{Mg}{kT}$ Correct value of M e.c.f. 3(b)(ii) Value of M given to 2 or 3 s.f., correct unit Example of calculation $M = -\frac{-1.24 \times 10^{-4} \times 1.38 \times 10^{-2} \text{ JK}^{-1} \times 288\text{K}}{9.81\text{ms}^{-2}} = 5.02 \times 10^{-26} \text{ kg}$	(1)(1)(1)	3
3(b)(iv)	Reads $\ln P_0$ from y-intercept Or Calculates (ln) P_0 using gradient and data point from best fit line Or Substitutes for (ln) P_0 using gradient and data point from best fit lineCalculates P at $h = (-)414$ mValue of P in range 105 kPa to 108 kPa[accept 2,3,4 SF]MP3 dependent on MP2Example of calculation $\ln P_0 = 4.62$ $\ln P = 4.62 + (-1.24 \times 10^{-4} \times -414) = 4.67$ $P = e^{4.67} = 107$ kPa	 (1) (1) (1) 	3
	Total for question 3		16

Question Number	Answer	Mark
4(a)(i)	EITHER	
	Repeat at different places and calculate a mean (1)	
	To reduce (the effect of) <u>random error</u> (1)	
	MP2 dependent on MP1 [Allow MP2 if MP1 partially correct]	
	OR	
	Use the ratchet to avoid squashing the rubber (1)	
	To reduce (the effect of) <u>random error</u> (1)	
	MP2 dependent on MP1 [Allow MP2 if MP1 partially correct]	
	OR	
	Check and correct for zero error (1)	
	To eliminate systematic error[Accept reduce for eliminate](1)	2
	MP2 dependent on MP1 [Allow MP2 if MP1 partially correct]	
4(a)(ii)	Mean $t = 1.04 \text{ (mm)}$ 3 SF only (1)	1
	Example of calculation Mean $t = \frac{(1.02 + 1.06 + 1.05 + 1.01)\text{mm}}{4} = 1.035 = 1.04 \text{ (mm)}$	
4(a)(iii)	Calculation using half range shown	
	Or Calculation of furthest from the mean shown (1)	
	Percentage uncertainty in $t = 3\%$ e.c.f. (a)(ii) Accept 2 SF (1)	2
	Example of calculation	
	Half range = $\frac{(1.06 - 1.01)\text{mm}}{2}$ = 0.025 = 0.03 (mm)	
	$\%$ U = $\frac{0.03$ mm}{1.04mm × 100 = 2.9% = 3%	
	Note: use of 0.025 in calculation gives 2.4% or 2%	

4(a)(iv)	The measurement is larger but the uncertainty is the same Or The measurement is larger but the resolution (of the micrometer) is the same So the percentage uncertainty is reduced (by a factor of 4) MP2 dependent on MP1	(1) (1)	2
4(a)(v)	The length <i>x</i> of the rubber band does not take into account the fold (at the ends). The (length <i>x</i> of the) rubber band could be measured when it is not taut	(1)	
	Or The width <i>w</i> could be measured when the rubber band is compressed	(1)	2

4(b)(i)	EITHER			
	Uses 2 × percentage uncertainty in D	[Accept 2 $\times \frac{\Delta D}{D}$]	(1)	
	Uncertainty in $D = 0.069 \text{ (cm}^2)$	2 SF only	(1)	
	Example of calculation			
	%U in $D^2 = 2 \times \frac{0.01}{3.45} \times 100 = 0.58\%$			
	U in $D^2 = 3.45^2 \times \frac{0.58}{100} = 0.069 \text{ (cm}^2\text{)}$			
	OR			
	Calculation of half range of D^2 shown		(1)	
	Uncertainty in $D = 0.069 \text{ (cm}^2)$	2 SF only	(1)	2
	Example of calculation			
	U in $D^2 = \frac{3.46^2 - 3.44^2}{2} = 0.069 \text{ (cm}^2\text{)}$			
4(b)(ii)	EITHER			
	Addition of uncertainties shown		(1)	
	U in $A = 0.052 \text{ (cm}^2)$	2 SF only e.c.f. (b)(i)	(1)	
	Example of calculation			
	$\frac{1}{10000000000000000000000000000000000$			
	12	()		
	OR			
				_
	Calculation of maximum and minimum	A shown	(1)	2
	U in $A = 0.053$ (cm ²)	2 SF only	(1)	
	Example of calculation			
	Maximum $A = (11.97 + 9.42 + 10.63) \times$	$\frac{\pi}{1} = 8.383 \text{ cm}^2$		
	Minimum $A = (11.83 + 9.30 + 10.49) \times -$	$\frac{12}{\pi} = 8.278 \text{ cm}^2$		
		12 12 12 10 0111		
	$\text{II in } 4 = \frac{8.383 - 8.278}{1000} = 0.052 \ (\text{am}^2)$			
	U in $A = \frac{8.383 - 8.278}{2} = 0.053 \text{ (cm}^2\text{)}$			

4(c)	Calculation of a relevant limit using percentage uncertainty shown Or Calculation of a relevant uncertainty using percentage uncertainty shown (1)	
	Upper limit ρ for rubber band = 1.20 (g cm ⁻³) and Lower limit ρ for rubber bung = 1.50 (g cm ⁻³) (1)	
	They are not made from the same type of rubber as the upper limit of the rubber band does not overlap the lower limit for the rubber bung (1)	3
	MP3 dependent MP2	
	Example of calculation Upper limit ρ for rubber band = $1.15 \times (1 + \frac{4.3}{100}) = 1.20$ (g cm ⁻³) Lower limit ρ for rubber bung = $1.52 \times (1 - \frac{1.2}{100}) = 1.50$ (g cm ⁻³)	
	Total for question 4	16

Released first on EDEXCEL AP DISCORD https://sites.google.com/view/ap-edexcel/

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom