

Mark Scheme (Results)

October 2017

Pearson Edexcel International Advanced Level in Physics (WPH06) Paper 01 Experimental Physics

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Physics Specific Marking Guidance Underlying principle

The mark scheme will clearly indicate the concept that is being rewarded, backed up by examples. It is not a set of model answers.

For example:

Horizontal force of hinge on table top

66.3 (N) or 66 (N) and correct indication of direction [no ue]

[Some examples of direction: acting from right (to left) / to the left / West / opposite direction to horizontal. May show direction by arrow. Do not accept a minus sign in front of number as direction.]

This has a clear statement of the principle for awarding the mark, supported by some examples illustrating acceptable boundaries.

Mark scheme format

- Bold lower case will be used for emphasis.
- Round brackets () indicate words that are not essential e.g. "(hence) distance is increased".
- Square brackets [] indicate advice to examiners or examples e.g. [Do not accept gravity] [ecf].

Unit error penalties

- A separate mark is not usually given for a unit but a missing or incorrect unit will normally cause the final calculation mark to be lost.
- Incorrect use of case e.g. 'Watt' or 'w' will not be penalised.
- There will be no unit penalty applied in 'show that' questions or in any other question where the units to be used have been given.
- The same missing or incorrect unit will not be penalised more than once within one question but may be penalised again in another question.
- Occasionally, it may be decided not to penalise a missing or incorrect unit e.g. the candidate may be calculating the gradient of a graph, resulting in a unit that is not one that should be known and is complex.
- The mark scheme will indicate if no unit error penalty is to be applied by means of [no ue].

Significant figures

- Use of an inappropriate number of significant figures in the theory papers will normally only be penalised in 'show that' questions where use of too few significant figures has resulted in the candidate not demonstrating the validity of the given answer.
- Use of an inappropriate number of significant figures will normally be penalised in the practical examinations or coursework.
- Using g = 10 m s⁻² will be penalised.

Calculations

- Bald (i.e. no working shown) correct answers score full marks unless in a 'show that' question.
- Rounding errors will not be penalised.
- If a 'show that' question is worth 2 marks then both marks will be available for a reverse working; if it is worth 3 marks then only 2 will be available.
- use of the formula means that the candidate demonstrates substitution of physically correct values, although there may be conversion errors e.g. power of 10 error.
- recall of the correct formula will be awarded when the formula is seen or implied by substitution.
 - The mark scheme will show a correctly worked answer for illustration only.

6. Graphs

- A mark for axes requires both axes to be labelled with quantities and units, and drawn the correct way round.
- 6.2 Sometimes a separate mark will be given for units or for each axis if the units are complex. This will be indicated on the mark scheme.
- 6.3 A mark given for choosing a scale requires that the chosen scale allows all points to be plotted, spreads plotted points over more than half of each axis and is not an awkward scale e.g. multiples of 3, 4, 7 etc.
- 6.4 Points should be plotted to within 1 mm.
 - Check the two furthest from the best line. If both OK award mark.
 - If either is 2 mm out do not award mark.
 - If both are 1 mm out do not award mark.
 - If either is 1 mm out then check another two and award mark if both of these OK, otherwise no mark.

Question Number	Answer		Mark
1(a)(i)	%U = 0.5 %	(1)	1
	Example of calculation: $\%$ U = 0.1 mm / 20 mm × 100 % = 0.5 %		
1(a)(ii)	Repeat readings and calculate mean To minimise random errors	(1) (1)	
	Or Measure several different places on tile and calculate mean To allow for variation in thickness/length/width of tile	(1) (1)	
	Or Check zero error on vernier callipers and/or micrometer To correct systematic error	(1) (1)	2
1(b)(i)	Correct calculation of mean volume And correct to 3 sf with corresponding unit (dependent on MP1)	(1) (1)	2
	Example of calculation: Volume = $23.4 \text{ mm} \times 23.1 \text{ mm} \times 7.95 \text{ mm} = 4297 \text{ mm}^3$ Volume = $4.30 \times 10^{-6} \text{ m}^3$		
1(b)(ii)	Calculates half range in each reading (Accept range) Calculates %U in each reading [allow mark if 0.5% as %U in length] Adds the %U (accept answers to 1, 2 or 3 sf)	(1) (1) (1)	3
	Example of calculation: ½ range for length = 0.2 mm ½ range for width = 0.1 mm ½ range for thickness = 0.02 mm		
	%U for length = 0.2 mm / 23.4 mm \times 100 % = 0.85 % %U for width = 0.1 mm / 23.1 mm \times 100 % = 0.43 % %U for thickness = 0.02 mm / 7.95 mm \times 100 % = 0.25 %		
	Total % $U = 0.85 + 0.43 + 0.25 = 1.5$ %		
1(c)(i)	Use of $d = m / V$ Density to 3 sf with corresponding unit (ecf from 1(b)(i))	(1) (1)	2
	Example of calculation: Density = mass / volume = 10.03×10^{-3} kg / 4.30×10^{-6} m ⁻³ = 2333 kg m ⁻³ Density = 2330 kg m ⁻³		

1(c)(ii)	Calculates upper and/or lower limit of candidate's value of density using calculated %U	(1)	
	Comparison made to 2500 kg m ⁻³ (dependent on MP1)	(1)	
	Example of calculation:		
	Upper limit to measured density = $2330 + (2330 \times 1.5 \%) = 2360$ kg m ⁻³		
	This is lower than given density of 2500 kg m ⁻³ so tile probably not made of crown glass		
	Or		
	Calculation of % difference between candidate's value and 2500 kg m ⁻³ .	(1)	
	Comparison of % difference with %U in density (volume) (dependent on MP1)	(1)	2
	Example of calculation: $\%D = \frac{2500 - 2330}{2500} \times 100 = 6.8 \%$		
	As %D is greater than %U so tile probably not made of crown glass		
	Total for question 1		12

Question Number	Answer		Mark
2(a)	Greater number of conduction/free electrons [Accept charge carriers for electrons]	(1)	1
2(b)(i)	So that p.d. does not affect current Or only temperature affects current	(1)	1
2(b)(ii)	Suitable circuit to include power supply and thermistor	(1)	
	Means of adjusting p.d. (variable power supply or variable resistor)	(1)	
	Ammeter and voltmeter in correct positions	(1)	3
2(c)(i)	Beaker of water/ice and thermometer	(1)	
	Ice and heater for water	(1)	2
2(c)(ii)	Remove heater just before taking reading		
	Or place thermometer and thermistor close to each other		
	Or stir the water	(1)	1
	Total for question 2		8

Question Number	Answer		Mark
3(a)	So system is performing SHM	(1)	1
3(b)	Measure nT and divide by n (to find T)	(1)	
	Use of a (fiducial) marker at the centre of the oscillation Or repeat procedure several times and calculate mean	(1)	2
3(c)(i)	Plot T^2 (y-axis) against m (x-axis)	(1)	
	As $T^2 = \left(\frac{4\pi^2}{k}\right) m$ is in the form $y = mx \ (+c)$	(1)	
	Or Plot T (y -axis) against \sqrt{m} (x -axis)	(1)	
	As $T = \left(\frac{2\pi}{\sqrt{k}}\right) \sqrt{m}$ is in the form $y = mx \ (+c)$	(1)	
	Or Plot $\log T$ against $\log m$	(1)	2
	As $\log T = \frac{1}{2} \log m + \log (2\pi/\sqrt{k})$ is in the form $y = mx + c$	(1) (1)	2
3(c)(ii)	Measure T for rock, calculate T^2 and read value of m from graph		
	Or Measure <i>T</i> for rock, read value of \sqrt{m} from graph and calculate <i>m</i>		
	Or Measure T for rock, calculate $\log T$, read off from graph and calculate m	(1)	1
	(Answer to be consistent with graph drawn in (c)(i))		
3(d)	Eliminates reaction time		
	Or reading of time at an exact position	(1)	1
	Total for question 3		7

Question	Answer		Mark
Number			
4 (a)	Use the same initial p.d		
	Or charge capacitor fully		
	Or check for zero error on voltmeter.	(1)	
	Place voltmeter close to stopwatch so both can be read at same time		
	Or make use of lap timer facility on stopwatch		
	Or use datalogger so V and t measured simultaneously	(1)	2
4 (b)	See $ln(V) = ln(V_0) - t/RC$ as $y = c + mx$	(1)	
	whom the anadient w. 1/BC which is constant	(1)	2
	where the gradient $m = -1/RC$ which is constant	(1)	4

Number 4(c)(i)	Answer				Mark
	ln(V/V) values corre	ectly calculated to 3	or 4 sf	(1)	
	Suitable scales: grea	ater than half orid u	sed in both directions	(1)	
		_			
	Axes labelled: y- ax	x is as $ln(V/V)$ and x -	-axis as t/s	(1)	
	Points plotted accur	ately		(2)	
	Best fit line drawn			(1)	6
	t/s	Mean V/V	ln (V/V)		
	0.00	6.00	1.792		
	10.00	5.20	1.649		
	20.00	4.56	1.517		
	30.00	3.97	1.379		
	40.00	3.40	1.224		
	50.00	2.94	1.078		
	60.00	2.59	0.952		
4 (c)(ii)	Gradient of graph co		from large triangle	(1)	
	(at least half of the t	drawn mic)		(1)	
	Use of gradient of g	graph = (-)1/RC		(1)	
	Calculation of C to	3 sf with unit		(1)	3
	Calculation of C to			(1)	3
	Example of calculat	tion:	1141	(1)	3
	Example of calculat Gradient = (0.80 - 1	tion: 1.79) / 70.0 = - 0.0	141	(1)	3
	Example of calculat	tion: 1.79) / 70.0 = -0.0 = 70.9 (s)		(1)	3
	Example of calculated Gradient = $(0.80 - 1.00)$	tion: 1.79) / 70.0 = -0.0 = 70.9 (s)		(1)	3
	Example of calculate Gradient = $(0.80 - 1.00)$ $RC = -1 / -0.0141$ $C = 70.9 \text{ s} / 68 \times 10$	$\frac{\text{tion:}}{1.79) / 70.0} = -0.0$ $= 70.9 \text{ (s)}$ $^{3} \Omega = 1.04 \times 10^{-3} \text{ F}$		(1)	3
	Example of calculate Gradient = $(0.80 - 1.00)$ $RC = -1 / -0.0141$ $C = 70.9 \text{ s} / 68 \times 10$	tion: 1.79) / 70.0 = -0.0 = 70.9 (s)		(1)	3
	Example of calculate Gradient = $(0.80 - 1.00)$ $RC = -1 / -0.0141$ $C = 70.9 \text{ s} / 68 \times 10$	$\frac{\text{tion:}}{1.79) / 70.0} = -0.0$ $= 70.9 \text{ (s)}$ $^{3} \Omega = 1.04 \times 10^{-3} \text{ F}$		(1)	3
	Example of calculate Gradient = $(0.80 - 1.00)$ $RC = -1/-0.0141$ $C = 70.9 \text{ s}/68 \times 10$	$\frac{\text{tion:}}{1.79) / 70.0} = -0.0$ $= 70.9 \text{ (s)}$ $^{3} \Omega = 1.04 \times 10^{-3} \text{ F}$		(1)	3
	Example of calculated Gradient = $(0.80 - 1.00141)$ C = $70.9 \text{ s} / 68 \times 10$ Gradient = $(0.80 - 1.00141)$ C = $70.9 \text{ s} / 68 \times 10$	$\frac{\text{tion:}}{1.79) / 70.0} = -0.0$ $= 70.9 \text{ (s)}$ $^{3} \Omega = 1.04 \times 10^{-3} \text{ F}$		(1)	3
	Example of calculated Gradient = $(0.80 - 1.00141)$ C = $70.9 \text{ s} / 68 \times 10$ Gradient = $(0.80 - 1.00141)$ C = $70.9 \text{ s} / 68 \times 10$	$\frac{\text{tion:}}{1.79) / 70.0} = -0.0$ $= 70.9 \text{ (s)}$ $^{3} \Omega = 1.04 \times 10^{-3} \text{ F}$		(1)	3
	Example of calculated Gradient = $(0.80 - 1.00141)$ $C = 70.9 \text{ s} / 68 \times 10$ Gradient = $(0.80 - 1.00141)$ $C = 70.9 \text{ s} / 68 \times 10$ (0.800) $($	$\frac{\text{tion:}}{1.79) / 70.0} = -0.0$ $= 70.9 \text{ (s)}$ $^{3} \Omega = 1.04 \times 10^{-3} \text{ F}$		(1)	3
	Example of calculated Gradient = $(0.80 - 1.00141)$ Gradient = $(0.80 - 1.0014)$ Gradient = $(0.8$	tion: 1.79) / 70.0 = -0.0 1.79 / 70.0 = -0.0 ph of ln(V/V) ag	gainst t/s	(1)	3
	Example of calculated Gradient = $(0.80 - 1.000)$ $RC = -1 / -0.0141$ $C = 70.9 \text{ s} / 68 \times 10$ Gradient = $(0.80 - 1.000)$ (0.800) $(0.800$	tion: 1.79) / 70.0 = -0.0 1.79 / 70.0 = -0.0 ph of ln(V/V) ag		(1)	3
	Example of calculated Gradient = $(0.80 - 1)$ RC = $-1/-0.0141$ C = 70.9 s $/68 \times 10$ Gradient = $(0.80 - 1)$ Gradient = $(0.80 - 1)$ Gradient = $(0.80 - 1)$ Gradient = $(0.800 - 1)$ Gradient	tion: 1.79) / $70.0 = -0.0= 70.9$ (s) 3 $\Omega = 1.04 \times 10^{-3}$ F ph of $\ln(V/V)$ ag	gainst t/s	(1)	3
	Example of calculated Gradient = $(0.80 - 1)$ RC = $-1/-0.0141$ C = 70.9 s $/68 \times 10$ Gradient = $(0.80 - 1)$ Gradient = $(0.80 - 1)$ Gradient = $(0.80 - 1)$ Gradient = $(0.800 - 1)$ Gradient	tion: 1.79) / $70.0 = -0.0= 70.9$ (s) 3 $\Omega = 1.04 \times 10^{-3}$ F ph of $\ln(V/V)$ ag	gainst <i>t</i> /s 0141x + 1.7937 *	(1)	3
	Example of calculated Gradient = $(0.80 - 1)$ RC = $-1/-0.0141$ C = 70.9 s $/68 \times 10$ Gradient = $(0.80 - 1)$ Gradient = $(0.80 - 1)$ Gradient = $(0.80 - 1)$ Gradient = $(0.800 - 1)$ Gradient	tion: 1.79) / 70.0 = -0.0 1.79) / 70.0 = -0.0 1.79) / 70.0 = -0.0 1.79) / 70.0 = -0.0 The ph of 1.04×10^{-3} Function of 1.04×10^{-3} Funct	gainst <i>t</i> /s 0141x + 1.7937 *	(1)	3